Exam

26/01/2023, 830 am - 1030 am

Instructions:

- Piepare your solutions in an ordered, clear and clean way. Avoid delivermg solutions with scratches
- Wite you name and student number mall pages of you solutions.
- Clearly mdicate each exercise and the conesponding answer. Provide you solutions with as much detal as possible
- Use different preces of paper for solutions of different exercises
- Read fist the whole exam, and make a strategy for which exercises you attempt first Stait with those you feel comfor table with ${ }^{1}$

Exercise 1: (1 pomi) Prove that $f(x, y)=\left(e^{1}+e^{y}, e^{\prime}+e^{-y}\right)$ is locally mertable at every pomt $(x, y) \in \mathbb{R}^{2}$ Moreover, If $f(a)=b$, what is the derivative of f^{-1} at $b^{?}$

Exercise 2: (15 ponts) Consider the ODE $x^{\prime \prime}+3 x^{\prime}+2 x=\frac{1}{1+e^{t}}$
a) Find the general solution of the given ODE
b) Make a sketch of the vector field conespondmg to the homogeneous equation $\imath^{\prime \prime}+3 \iota^{\prime}+2 x=0$
c) Is there a relationship between the vector field of part b) and the general solution of part a)?

Exercise 3: (1 pont) Consider $f(t)=\int_{t}^{t^{2}} \frac{\mathrm{~d} s}{s+\sin s}$ for $t>1$ Compute the denvative of f
Hint: 1t may be uscful to write f as the composition of two functions, one of which is $(a, y) \mapsto \int_{,}^{y} \frac{\mathrm{~d} s}{s+\sin s}$

Exercise 4: (1 ponit) What is the n-dimensional volume of the 1 egion

$$
\left\{r=\left(x_{1}, \quad, v_{n}\right) \in \mathbb{R}^{n} \mid r_{1} \geq 0 \text { for all } \imath=1, \quad, n \text { and } r_{1}+2 v_{2}+\quad+n v_{n} \leq n\right\} ?
$$

Exercise 5: (1 pomi) Let \mathcal{S} be a closed cuve in \mathbb{R}^{2} and \mathcal{C} the unit cucle $m \mathbb{R}^{2}$ Suppose that \mathcal{S} and \mathcal{C} ate diffeomor phic What is the 2-dimensional volume of the curve $\mathcal{S}\left(\operatorname{vol}_{2} \mathcal{S}\right)^{7}$ Justify your answer in full detail
Hints and remarks: we are asking for the 2 -volume, and not the 1 -volume, of the 1 -dimensional curve \mathcal{S}, and not of the region enclosed by it, for this exercise you may assume that " \mathcal{S} and \mathcal{C} are diffeomor phic" means that there is a C^{\prime}-function $f, r \geq 1$, with C^{\prime} inverse, such that $f \quad \mathcal{S} \rightarrow \mathcal{C}$ and $f^{-1} \quad \mathcal{C} \rightarrow \mathcal{S}$

Exercise 6: (15 points) Let ω be the n-form in \mathbb{R}^{n} defined by $\omega\left(e_{1}, \ldots, e_{n}\right)=1$, where $\left\{e_{1}, \quad, e_{n}\right\}$ is the canonical basis of \mathbb{R}^{n} Let v_{1}, \quad, v_{n} be vectors in \mathbb{R}^{n} given by $v_{2}=\sum_{1 \leq j \leq n} a_{t j} e_{3}$, where the $a_{2 j}$'s are real scalars Prove that
a) $\omega\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det} A$, where $A=\left[a_{2 j}\right]_{2, j=1,}, n$ is the $n \times n$ matrix with elements $a_{2 \jmath}$.
b) $\omega=\mathrm{d} \nu_{1} \wedge \quad \wedge \mathrm{~d} \nu_{n}$

Exercise 7: (1 point) Let $z_{1}=x_{1}+\imath y_{1}, z_{2}=x_{2}+\imath y_{2}$ be cooldmates in \mathbb{C}^{2} Compute the integral of $\mathrm{d} x_{1} \wedge \mathrm{~d} y_{1}+\mathrm{d} y_{1} \wedge \mathrm{~d} x_{2}$ over the part of the locus of the equation $z_{2}=z_{1}^{h}$ where $\left|z_{1}\right|<1$, oriented by $\Omega=\operatorname{sgn} \mathrm{d} x_{1} \wedge \mathrm{~d} y_{1}$

Exercise 8: (1 poml) Find the flux of the vector field $\vec{F}\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=r^{a}\left[\begin{array}{c}x \\ y \\ z\end{array}\right]$, where a is a number and $r=\sqrt{x^{2}+y^{2}+z^{2}}$, though the surface S, where S is the sphere of radius R oriented by the outward-pointing normal
Hint: the result is a function of a and R

