Exam

26/01/2023, 8 30 am - 10 30 am

Instructions:

- Prepare your solutions in an ordered, clear and clean way. Avoid delivering solutions with scratches
- Write your name and student number in all pages of your solutions.
- Clearly indicate each exercise and the corresponding answer. Provide your solutions with as much detail as possible
- Use different pieces of paper for solutions of different exercises
- Read first the whole exam, and make a strategy for which exercises you attempt first. Start with those you feel comfortable with!

Exercise 1: (1 point) Prove that $f(r, y) = (e^r + e^y, e^r + e^{-y})$ is locally invertible at every point $(r, y) \in \mathbb{R}^2$. Moreover, if f(a) = b, what is the derivative of f^{-1} at b^2 .

Exercise 2: (1.5 points) Consider the ODE $x'' + 3x' + 2x = \frac{1}{1 + e^t}$

- a) Find the general solution of the given ODE
- b) Make a sketch of the vector field corresponding to the homogeneous equation $\iota'' + 3\iota' + 2x = 0$
- c) Is there a relationship between the vector field of part b) and the general solution of part a)?

Exercise 3: (1 point) Consider $f(t) = \int_{t}^{t^{2}} \frac{\mathrm{d}s}{s + \sin s}$ for t > 1 Compute the derivative of f

Hint: it may be useful to write f as the composition of two functions, one of which is $(x, y) \mapsto \int_{x}^{y} \frac{\mathrm{d}s}{s + \sin s}$

Exercise 4: (1 point) What is the *n*-dimensional volume of the region

$$\{r = (x_1, \dots, r_n) \in \mathbb{R}^n \mid r_i \ge 0 \text{ for all } i = 1, \dots, n \text{ and } r_1 + 2r_2 + \dots + nr_n \le n\}$$
?

Exercise 5: (1 point) Let S be a closed curve in \mathbb{R}^2 and C the unit cicle in \mathbb{R}^2 Suppose that S and C are diffeomorphic What is the 2-dimensional volume of the curve S (vol₂ S)? Justify your answer in full detail

Hints and remarks: we are asking for the 2-volume, and not the 1-volume, of the 1-dimensional curve S, and not of the region enclosed by it, for this exercise you may assume that "S and C are diffeomorphic" means that there is a C'-function $f, r \ge 1$, with C' inverse, such that $f^{-1} S \to C$ and $f^{-1} C \to S$

- **Exercise 6:** (1.5 points) Let ω be the *n*-form in \mathbb{R}^n defined by $\omega(e_1, \ldots, e_n) = 1$, where $\{e_1, \ldots, e_n\}$ is the canonical basis of \mathbb{R}^n Let v_1, \ldots, v_n be vectors in \mathbb{R}^n given by $v_i = \sum_{1 \le j \le n} a_{ij} e_j$, where the a_{ij} 's are real scalars. Prove that
 - a) ω(v₁, . , v_n) = det A, where A = [a_{ij}]_{i,j=1, ...,n} is the n × n matrix with elements a_{ij}.
 b) ω = dx₁ ∧ ∧ dx_n
- **Exercise 7:** (1 point) Let $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$ be coordinates in \mathbb{C}^2 Compute the integral of $dx_1 \wedge dy_1 + dy_1 \wedge dx_2$ over the part of the locus of the equation $z_2 = z_1^k$ where $|z_1| < 1$, oriented by $\Omega = \operatorname{sgn} dx_1 \wedge dy_1$

Exercise 8: (1 point) Find the flux of the vector field $\vec{F}\begin{pmatrix} x\\ y\\ z \end{pmatrix} = r^a \begin{bmatrix} x\\ y\\ z \end{bmatrix}$, where *a* is a number and $r = \sqrt{x^2 + y^2 + z^2}$, through the surface *S*, where *S* is the sphere of radius *R* oriented by the outward-pointing normal **Hint:** the result is a function of *a* and *R*